
Consumer video equipment is now commonplace in most homes

and is almost part of the furniture. The evolution of video equip-

ment, which offers, improved picture performance that is achieved

by extended definition television and is available on many progres-

sive Digital Versatile Disk players (480p & 576p). Further increased

resolution is offered on High Definition (HD) capable equipment

and is accessible via terrestrial or satellite services. These new

types of video equipment require manufactures to develop new

testing methodologies to ensure the quality of their product.

Manufacturers of consumer video equipment need to ensure that

the video outputs of their consumer product meet video specifica-

tions and that the device is functioning correctly. To ensure the

performance of the consumer device various video measurements

are performed on the video output of the device under test (DUT).

These measurements need to be made quickly and accurately

on the DUT in order to allow a fast throughput of product on the

production line. Test routines are normally operated automatically

and provide operators with simple pass or fail warnings at the

completion of the tests. To perform this test the software program

controls various measurement instruments, this is normally done

via a GPIB (General Purpose Interface Bus IEEE 488) connection.

The VM5000HD is an analog High Definition (HD) automated

measurement instrument that performs 6 different types of

video measurements on various HD standards (1080i 59.94,

1080i 50 & 720p 59.94) and both progressive extended definition

video formats (480p & 576p). The measurements performed

by the instrument are detailed in a Tektronix application note

(Literature Number 25W-16653-0) Analog High Definition

Component Measurement. This instrument can be controlled via a

GPIB command set and allows the functionality of the instrument

to be manipulated by a software program. An example software

program is provided for the VM5000HD that illustrates the various

functions needed to perform an automated routine. This program

can be tailored to meet your individual requirements and this

application note details how each part of these functions work on

the VM5000HD.

Using the
VM5000HD and
the GPIB Interface

Automated testing of many consumer products within a
manufacturing environment requires software control of
the measurement instrument via GPIB.

Application Note

1 www.tektronix.com/video

Using the VM5000HD and the GPIB Interface
Application Note

There are six different automated measurements performed by the

VM5000HD that allow a DUT to be characterized and ensure confor-

mance of the device in either RGB or YPbPr formats. The following

measurements are available in the VM5000HD:

Channel Delay Compares the inter channel timing relation-

ship of each channel and provides a value for

the time in nanoseconds that one channel is

advanced or delayed from the other. The ideal

value would be 0.0ns for each comparison.

A positive value indicates a channel delay of

‘A’ with respect to ‘B’ and a negative value

indicates a channel advance of ‘A’ with

respect to ‘B’.

Color Bars Provides amplitude measurements for each

of the three channels. A total of eight ampli-

tude measurements are made on each chan-

nel corresponding to each color of the color

bar signal. Limits are typically used to quantify

the range of acceptable performance of

the device.

Non-Linearity Amplification stages should amplify each

amplitude value equally. If the system does

not process the signal correctly this can lead

to different gains being applied to the signal

at different amplitude levels and produce a

non-linearity in the performance of the device.

Noise Measurement Noise is inherent in every electrical circuit

but excessive noise can become visible in the

picture at approximately 40dB. It can provide

a simple indication of some failure within

the device.

Multiburst This measurement allows the user to check

the frequency response of the system. A low

frequency flag is compared in amplitude to

various increasing frequency packets of ideally

the same amplitude and the deviation in

amplitude between the flag and the frequency

packet is measured in dB.

Sync Timing The various video standards have different

timings for each of the parameters within

the horizontal blanking interval. There are

specific tolerances that each format is

required to meet.

Within the manufacturing environment it is important for these

measurements to be made on the DUT to be within acceptable limits

for conformance to the specifications of the device. It is therefore

necessary to define a set of parameters for each measurement to

provide a pass or fail indication. Within the main.c program the

following tolerances.h file is used.

/*
* tolerances.h version 1.0
*
* This file contains the tolerances used in the GPIB example controller

program
* for the VM5000HD, main.c
*
* (c) Tektronix, Inc.
*
*/

#ifndef TOLERANCE_H
#define TOLERANCE_H
// CONSTANTS FOR MEASUREMENT LIMIT CHECKING

// Channel Delay
#define MAX_CHANNEL_DELAY 10.0F
#define MIN_CHANNEL_DELAY -10.0F

// Color Bars
#define NUMBER_OF_BARS 8
#define COLORBARS_TOLERANCE (50.0F)
const char* colorString[NUMBER_OF_BARS] = {

"White",
"Yellow",
"Blue",
"Green",
"Magenta",
"Red",
"Blue",
"Black",

};
const float chan1Bar274mNominal[NUMBER_OF_BARS] = {

700.0F, // White
649.5F, // Yellow
551.2F, // Blue
500.6F, // Green
199.4F, // Magenta
148.8F, // Red
50.5F, // Blue
0.0F, // Black
};

2 www.tektronix.com/video

Using the VM5000HD and the GPIB Interface
Application Note

const float chan2Bar274mNominal[NUMBER_OF_BARS] = {
0.0F, // White

-350.0F, // Yellow
80.0F, // Blue

-269.8F, // Green
269.8F, // Magenta
-80.2F, // Red
350.0F, // Blue

0.0F, // Black
....};
const float chan3Bar274mNominal[NUMBER_OF_BARS] = {

0.0F, // White
32.0F, // Yellow

-350.0F, // Blue
-317.9F, // Green
317.9F, // Magenta
350.0F, // Red
-32.0F, // Blue

0.0F, // Black
};

// Multiburst
#define NOMINAL_MB_FLAG_AMPLITUDE 320.0F // mV
#define NOMINAL_MB_FLAG_TOL 10.0F // mV
#define MAX_MULTIBURST_MHZ_TOL 0.5F
#define MIN_MULTIBURST_MHZ_TOL (-0.5F)
#define MAX_MULTIBURST_DB 2.0F
#define MIN_MULTIBURST_DB (-2.0F)

#define NUMBER_OF_BURSTS 6
const float nominalBurstFrequencies[NUMBER_OF_BURSTS] = {

5.0F,
10.0F,
15.0F,
20.0F,
25.0F,
30.0F,
};

// Noise
#define MAX_NOISE_RMS_MV 10.0F
#define MIN_NOISE_RMS_MV 0.0F

// Nonlinearity
#define MAX_NONLINEARITY_PERCENT_DELTA 3.0F

// Sync
#define MAX_NEG_SYNC_LEVEL -250.0F
#define MIN_NEG_SYNC_LEVEL -350.0F
#define MAX_POS_SYNC_LEVEL 350.0F
#define MIN_POS_SYNC_LEVEL 250.0F
#define MAX_FRONT_PORCH_LEVEL 20.0F
#define MIN_FRONT_PORCH_LEVEL -20.0F
#define MAX_FRONT_PORCH_WIDTH 727.27F
#define MIN_FRONT_PORCH_WIDTH 565.66F
#define MAX_NEG_SYNC_FALL 74.07F
#define MIN_NEG_SYNC_FALL 33.67F
#define MAX_NEG_SYNC_WIDTH 633.0F
#define MIN_NEG_SYNC_WIDTH 552.19F
#define MAX_SYNC_RISE 74.07F
#define MIN_SYNC_RISE 33.67F
#define MAX_POS_SYNC_WIDTH 633.0F
#define MIN_POS_SYNC_WIDTH 552.19F
#define MAX_POS_SYNC_FALL 74.07F
#define MIN_POS_SYNC_FALL 33.67F
#define MAX_BACK_PORCH_WIDTH 2114.5F
#define MIN_BACK_PORCH_WIDTH 1952.8F

#endif

Each of the six measurements has specific limits that define the

maximum and minimum limit conditions that the measurement

should be within. If these limits are exceeded then this will produce

an error flag within the main program. The exception to this is the

color bar measurement that requires a slightly different implementa-

tion because it requires three different parameters to be set for

each of the channels and the tolerance is a deviation from the ideal

value. In this case COLORBARS_TOLERANCE (50.0F) is defined and

each color bar within each channel has a specific voltage value.

This tolerances file is for one specific video standard and format,

not all video formats will have the same specific conditions and it

maybe necessary to have different limit files for each format being

measured by the instrument.

3www.tektronix.com/video

Using the VM5000HD and the GPIB Interface
Application Note

There are several other include files that are set-up in the initial

main.c program

/*
* main.c version 1.0
*
* Example program to make measurements using the Tektronix

VM5000HD.
* It is expected you will restructure this to fit your project's needs
* changing the error reporting boundaries to fit your product.
*
* This is intended to provide an example only, helping you get started
* Using the VM5000HD.
*
* This programs can be configured to some degree using the #define

below.
*
* (c) Tektronix, Inc.
*
*/

#include <windows.h>
#include <stdio.h>
#include <string.h>

#include "decl-32.h"
#include "lib.h"
#include "tolerances.h"

The lib.h library is included because it allows the program to

communicate with the GPIB system and send commands via the

TDS oscilloscope platform on which the VM5000HD is based.

Additional information on the GPIB capabilities and details of how

to send commands to the instrument can be found in the following

manual (071-0876-01) that is available on the VM5000HD install

CD. There are basically two types of commands:

1. An instruction that commands the instrument to perform

some parameter

2. A query, which asks a question as to the current state of the

instrument, for instance whether it has completed a command.

For example:

Command
DISplay:GRAticuleFRAme Changes the display graticule frame

Query
ID? Queries the instrument

NOTE: For TDS commands please follow the syntax within the manual.

The commands for the VM5000HD utilize a VARIable:VALue syntax.

This mechanism signals the platform to send commands to the

VM5000HD application. Full details on the instruction set and pro-

cedure can be found in Appendix C of the VM5000HD User Manual

(071-1252-00). The following example illustrates how to set the

color bar measurement on.

Command
VARI:VAL "ColorBarsSet" , "on" Sets color bar measurement on

Query
VARI:VAL? "ColorBarsSet" Queries the status of the color

bar measurement on

NOTE: The commands used by the VM5000HD consist of the following

instructions VARI:VAL Command, Argument where Command is cases

sensitive and must use the correct upper and lower case character

set to be understood by the system. The reason for this is that the

value becomes a pointer internally within the VM5000HD application

and the incorrect case will result in pointing to the wrong location.

However Argument is NOT case sensitive because it is a value.

In order to ensure proper flow of your instructions within the

VM5000HD it is required that a 50 millisecond delay is used to

allow each command to propagate through the platform and the

VM5000HD application. This prevents conflict arising within the

system and is achieved by the following statements within

the program.

// All times are in milliseconds
#define COMMAND_TIME_DELAY 50
// Use this delay between each command.

To simplify the query process and help determine when a command

is completed a function QueryUntilReady is used. This function

queries a command and loops until the command is finished, there

are also several conditional statements to avoid a lock up on an

error. The initial defines set the parameters for the QueryUntilReady

function at the beginning of the program.

// These are values returned by QueryUntilReady(), to indicate the
result of the query
#define QUERYERROR (-1)
#define QUERYZERO 0
#define QUERYONE 1
#define QUERYOK 2
#define QUERYOTHER 3

4 www.tektronix.com/video

Using the VM5000HD and the GPIB Interface
Application Note

The major function QueryUntilReady is defined later in the program

and takes in char * which is used as a pointer to the command

being queried. Two other values are input to the function. The int

expectedResult is the value which is expected to be returned by the

query when finished and int timeoutmilliSeconds is the maximum

time allowed to wait to avoid a lock up condition.

/*
* Function: Query the VM5000HD and wait for the desired response to
* ensure the VM5000HD command processing is complete. This also has a
* timeout to avoid locking up if an error occurs.
*
* Input Parameters:
* char *: pointing to the command being queried
* int: the expected result, see below
* timoutSeconds: maximum time to wait to avoid locking up
*
* Return Value: int indicating the value received from the VM5000HD
* Returns the classification of query, as specified above
* QUERYERROR = error,
* QUERYZERO = "Header 0",
* QUERYONE = "Header 1",
* QUERYOK = "Header OK",
* QUERYOTHER = all others
*/

int QueryUntilReady(const char *command, int expectedResult, int
timeoutmilliSeconds)
{
int milliSeconds = 0; // milliseconds
int returnVal = 0;

// build the query to be sent to the VM5000HD: Variable:value?
"command" \n
strcpy(outString, "VARIable:VALue? \"");
strcat(outString, command);
strcat(outString, "\"\n");

// get the VM5000HD response to the query
returnVal = getVM5000HDResponse(outString);

// wait until the response is what is expected or timeout occurs
while ((milliSeconds < timeoutmilliSeconds) && (returnVal !=
expectedResult))
{

returnVal = getVM5000HDResponse(outString);
Sleep(10);
milliSeconds = milliSeconds + 10;

}

// If a timeout occurred, notify the operator because there is probably
an error.

if (milliSeconds >= timeoutmilliSeconds) {
printf(" TIMEOUT in %s: waited > %d millliseconds\n", command,

timeoutmilliSeconds);
returnVal = QUERYERROR;

}
return returnVal;

}

The following is the main part of the query statement which initiates

the "VARIable:VALue? \ "" query. The following lines are the neces-

sary concatenation of the strings to which the query is applied the

following piece of the above function is shown below. This then

equates to the following statement VARI:VAL? "ColorBarsSet"

for example.

// build the query to be sent to the VM5000HD: Variable:value? "
command" \n

strcpy(outString, "VARIable:VALue? \"");
strcat(outString, command);
strcat(outString, "\"\n");

There are several other define statements at the beginning of

the program.

The PRINTFLAG can be used to display the GPIB commands of the

VM5000HD. This allows debugging of the program if changes are

made from the original program. Normally the value would be set to

"0" so that these commands were not seen as the program runs. If

the value is set to "1" then each command will be displayed as the

program executes.

/* Use this define to display the GPIB commands to the VM5000HD
* Set to 1 to see the commands; set to 0 to not see them.
*/

#define PRINTFLAG 0

The GPIB_ADDRESS sets the GPIB address of the platform. This is

similar to the command available in the Utilities menu for the GPIB

Configuration under address function.

/* Use this defines to set the GPIB address of your VM5000HD.
* Set the address in the platform/oscilloscope:
* Utilities->GPIB Configuration menu under Address.
*/

#define GPIB_ADDRESS "dev1"

The program is written to execute each of the six measurements.

If you wish not to execute one or several of the measurement

then the define statement for that particular measurement should

be commented out and then this function will not be tested as part

of the measurement.

/* Use these defines to select which measurements you wish to run
* If a define is commented out, that measurement is not run.
*/

#define MEASURE_CHANNELDELAY
#define MEASURE_COLORBARS
#define MEASURE_MULTIBURST
#define MEASURE_NONLINEARITY
#define MEASURE_NOISE
#define MEASURE_SYNC

5www.tektronix.com/video

Using the VM5000HD and the GPIB Interface
Application Note

Each of these define statements makes a call to a function

doMeasurements in the program to perform the specific measure-

ment. An initial setup is performed before executing the individual

measurements. Note if these measurements are not defined in the

first part of the program and are commented out then the ifdef (If

Defined) command will not be performed on those specific measure-

ments. This part of the program sets up the initial values of each

measurement and initialize the loop counter which allows the meas-

urements to be repeated a number of times. A tolerance value is

setup to compare some of the measurements against their measure-

ment limits and a check of the ID of the VM5000HD is performed.

/*
* Function: Set up the VM5000HD to do all (or selected) measurements.
* select the desired measurements using defines at the top
* Read the result from the VM5000HD.
* Check the results are ok.
* Print a report of the resulting measurements.
*
* Set this to make a single set of measurements or loop

continuously.
*
* Input Parameters: none
*
* Return Value: total number of errors
*/

int doMeasurements(void)
{

// used for all measurements
float tolerence = 50.0F; // mV

#ifdef LOOP
int loopCount = 0;

#endif /* LOOP */

#ifdef MEASURE_CHANNELDELAY
float Ch1Delay,Ch2Delay,Ch3Delay;

#endif /* MEASURE_CHANNELDELAY */

#ifdef MEASURE_COLORBARS
float Ch1Bar[8],Ch2Bar[8],Ch3Bar[8];
long bar;

#endif /* MEASURE_COLORBARS */

#ifdef MEASURE_MULTIBURST /* turn ON the multiburst measurement */
float Ch1Multiburst[NUMBER_OF_BURSTS];
float Ch2Multiburst[NUMBER_OF_BURSTS];
float Ch3Multiburst[NUMBER_OF_BURSTS];
long burst;

#endif /* MEASURE_MULTIBURST */

#ifdef MEASURE_NOISE
float Ch1Noise,Ch2Noise,Ch3Noise;

#endif /* MEASURE_NOISE */

#ifdef MEASURE_NONLINEARITY
#define NUMBER_OF_NONLINEARITY_DELTAS 5

float Ch1Delta[NUMBER_OF_NONLINEARITY_DELTAS];
float Ch2Delta[NUMBER_OF_NONLINEARITY_DELTAS];
float Ch3Delta[NUMBER_OF_NONLINEARITY_DELTAS];
long delta;

#endif /* MEASURE_NONLINEARITY */

#ifdef MEASURE_SYNC
/* turn ON the sync measurement */
float frontPorchLevel, negSyncLevel, posSyncLevel;
float frontPorchWidth, negSyncFall, negSyncWidth, syncRise,

posSyncWidth, posSyncFall, backPorchWidth;
#endif /* MEASURE_SYNC */

int cdError, cbError, mbError, noiseError, nlError, syncError, totalErrors;
cdError = cbError = mbError = noiseError = nlError = syncError =

totalErrors = 0;

// Send a query to the VM5000HD platform and get the response, the ID
GpibWriteString ("id?", PRINTFLAG);
GpibRead (queryResponse, MAX_BUF);
if (PRINTFLAG == 1)

printf ("%s", queryResponse);

strcpy(outString, "VARIable:VALue? \"ID\"\n");
GpibWriteString (outString, PRINTFLAG);
GpibRead (queryResponse, MAX_BUF);
if (PRINTFLAG == 1)

printf ("Query response to id? %s\n", queryResponse);

#ifdef LOOP
while (1)
{

#endif /* LOOP */
// Set up to run all measurements

/* set the VM5000HD to its default setting to provide
* a known starting setup
*/

doDefaultSettings();

Note the measurement can be performed continuously if the define

LOOP is not commented out of the program otherwise the program

will only run through the measurements once.

/* Set this define "on" to cause the measurements to loop continuously
* If this is commented out, the measurements run only once.
*/

#define LOOP

6 www.tektronix.com/video

Using the VM5000HD and the GPIB Interface
Application Note

Once these initial settings are performed the command for the

measurements are made. In this case the "VARIable:VALue

ChannelDelaySet","on" command is issued for each of the measure-

ment which are defined in the first part of the program. Note the

default of the instrument is to have color bar measurement selected.

Therefore if the color bars measurement is commented out in the

first part of the program it is necessary to de-select the color bar

measurement and this is done by the ifndef (If Not Defined) and the

command to turn off the measurement is issued instead of turning

on the measurement as is done with all the other commands.

#ifdef MEASURE_CHANNELDELAY /* turn ON the channel delay
measurement */
strcpy(outString, "VARIable:VALue \"ChannelDelaySet\",\"on\"\n");
sendCommandToVM5000HD (outString);

#endif

/* note this turns off Color Bars; Color Bars is turned on by default
*/
#ifndef MEASURE_COLORBARS /* turn OFF the channel delay
....measurement */

strcpy(outString, "VARIable:VALue \"ColorBarsSet\",\"off\"\n");
sendCommandToVM5000HD (outString);

#endif

#ifdef MEASURE_MULTIBURST /* turn ON the multiburst measurement */
strcpy(outString, "VARIable:VALue \"MultiburstSet\",\"on\"\n");
sendCommandToVM5000HD (outString);

#endif

#ifdef MEASURE_NOISE /* turn ON the Noise measurement */
strcpy(outString, "VARIable:VALue \"NoiseSet\",\"on\"\n");
sendCommandToVM5000HD (outString);

#endif

#ifdef MEASURE_NONLINEARITY /* turn ON the NonLinearity
measurement */
strcpy(outString, "VARIable:VALue \"NonLinearitySet\",\"on\"\n");
sendCommandToVM5000HD (outString);

#endif

#ifdef MEASURE_SYNC /* turn ON the sync measurement */
strcpy(outString, "VARIable:VALue \"SyncSet\",\"on\"\n");
sendCommandToVM5000HD (outString);

#endif

After the measurements have been completed the set of results need

to be obtained and compared with the tolerances data. Then the

results can be reported as an output and provide indication to the

user of a pass or failure of the DUT. So each of the measurements

scans the data values of the VM5000HD and then by performing the

GpibRead vm5000hdResult. It then compares these values against

the maximum and minimum values of the tolerances.h file and if the

value is outside of these limits an error is reported. Note if there are

no errors then no values are printed as a report and the program

indicates that the device passed the series of tests.

#ifdef MEASURE_CHANNELDELAY
// Channel Delay Results
strcpy(outString, "VARIable:VALue? \"ChannelDelayAll\"\n");
GpibWriteString (outString, PRINTFLAG);
GpibRead (vm5000hdResult, MAX_BUF);
if (1 == PRINTFLAG)

printf ("%s",vm5000hdResult);

sscanf(vm5000hdResult,"%s%f%f%f",dummyString, &Ch1Delay,
&Ch2Delay, &Ch3Delay);

if (Ch1Delay > MAX_CHANNEL_DELAY || Ch1Delay
< MIN_CHANNEL_DELAY)

{
cdError++;
printf ("String read %s\n",vm5000hdResult);
printf ("Ch1 ChannelDelay = %f\n", Ch1Delay);

}

if (Ch2Delay > MAX_CHANNEL_DELAY || Ch2Delay
< MIN_CHANNEL_DELAY)

{
cdError++;
printf ("String read %s\n",vm5000hdResult);
printf ("Ch2 ChannelDelay = %f\n", Ch2Delay);

}

if (Ch3Delay > MAX_CHANNEL_DELAY || Ch3Delay
< MIN_CHANNEL_DELAY)

{
cdError++;
printf ("String read %s\n",vm5000hdResult);

printf ("Ch3 ChannelDelay = %f\n", Ch2Delay);

7www.tektronix.com/video

Using the VM5000HD and the GPIB Interface
Application Note

#ifdef MEASURE_COLORBARS
// Color Bars Results
tolerence = COLORBARS_TOLERANCE; // mV

strcpy(outString, "VARIable:VALue? \"ColorBarsmVCh1\"\n");
GpibWriteString (outString, PRINTFLAG);
GpibRead (vm5000hdResult, MAX_BUF);
if (1 == PRINTFLAG)

printf ("%s",vm5000hdResult);

sscanf(vm5000hdResult,"%s%f%f%f%f%f%f%f%f",dummyString,
&Ch1Bar[0],&Ch1Bar[1],&Ch1Bar[2],&Ch1Bar[3],&Ch1Bar[4],
&Ch1Bar[5],&Ch1Bar[6],&Ch1Bar[7]);

for(bar = 0; bar < NUMBER_OF_BARS; bar++)
if((Ch1Bar[bar] > chan1Bar247mNominal[bar]+tolerence) ||

(Ch1Bar[bar] < chan1Bar247mNominal[bar]-tolerence))
{

cbError++;
printf ("ColorBars Ch1 %s = %f vs nominal of

%f\n",&colorString[bar],Ch1Bar[bar], chan1Bar247mNominal[bar]);
printf ("String read %s\n",vm5000hdResult);

}
strcpy(outString, "VARIable:VALue? \"ColorBarsmVCh2\"\n");
GpibWriteString (outString, PRINTFLAG);
GpibRead (vm5000hdResult, MAX_BUF);
if (1 == PRINTFLAG)

printf ("%s",vm5000hdResult);

sscanf(vm5000hdResult,"%s%f%f%f%f%f%f%f%f",dummyString,
&Ch2Bar[0],&Ch2Bar[1],&Ch2Bar[2],&Ch2Bar[3],&Ch2Bar[4],
&Ch2Bar[5],&Ch2Bar[6],&Ch2Bar[7]);

for(bar = 0; bar < NUMBER_OF_BARS; bar++)
if((Ch2Bar[bar] > chan2Bar247mNominal[bar]+tolerence) ||

(Ch2Bar[bar] < chan2Bar247mNominal[bar]-tolerence))
{

cbError++;
printf ("ColorBars Ch2 %s = %f vs nominal of

%f\n",&colorString[bar],Ch2Bar[bar], chan2Bar247mNominal[bar]);
printf ("String read %s\n",vm5000hdResult);

}
strcpy(outString, "VARIable:VALue? \"ColorBarsmVCh3\"\n");
GpibWriteString (outString, PRINTFLAG);
GpibRead (vm5000hdResult, MAX_BUF);
if (1 == PRINTFLAG)

printf ("%s",vm5000hdResult);

sscanf(vm5000hdResult,"%s%f%f%f%f%f%f%f%f",dummyString,
&Ch3Bar[0],&Ch3Bar[1],&Ch3Bar[2],&Ch3Bar[3],&Ch3Bar[4],
&Ch3Bar[5],&Ch3Bar[6],&Ch3Bar[7]);

for(bar = 0; bar < NUMBER_OF_BARS; bar++)
if((Ch3Bar[bar] > chan3Bar247mNominal[bar]+tolerence) ||

(Ch3Bar[bar] < chan3Bar247mNominal[bar]-tolerence))
{

cbError++;
printf ("ColorBars Ch3 %s = %f vs nominal of

%f\n",&colorString[bar],Ch3Bar[bar], chan3Bar247mNominal[bar]);
printf ("String read %s\n",vm5000hdResult);

}
#endif /* MEASURE_COLORBARS */

Channel Delay is a relatively simple procedure to query the data and

check that it is within limits. A similar function is done for Color

Bars but is a little more complicated because of the greater number

of values reported by the VM5000HD and the larger number of limits

to be checked for each individual result. Therefore an array is used to

more effective pass the results and limits data from the VM5000HD

to the program.

Once the measurements have been completed it is useful to gener-

ate a report of the results to document as to whether the DUT

passed or failed the series of tests and to provide a log of measure-

ment results from a set of devices. This is achieved by the function

GENERATE_REPORT, which saves the results to a file.

/* Use this defines to generate a report when the tests complete
* If the define is commented out, no report is generated.
*/

#define GENERATE_REPORT

If the define GENERATE_REPORT is not commented out of the pro-

gram then the following function is performed at the completion of

the measurements. If the define for GENERATE_REPORT is com-

mented out of the program then no report is generated.

8 www.tektronix.com/video

Using the VM5000HD and the GPIB Interface
Application Note

#ifdef GENERATE_REPORT
// Generate report of every measurement

strcpy(outString, "VARIable:VALue
\"ReportGenerate\",\"c:\\VM5000HD\\FullTest.rtf\"\n");

generateReport (outString);
#endif /* GENERATE_REPORT */

totalErrors = cdError + cbError + mbError + noiseError + nlError +
syncError;

if (cdError > 0 || cbError > 0 || mbError > 0 || noiseError > 0 ||
nlError > 0 || syncError > 0)

{
printf ("Total Errors = %d \n",totalErrors);
printf ("cdError = %d, cbError = %d, mbError = %d, noiseError =

%d, nlError = %d, syncError = %d\n",
cdError, cbError, mbError, noiseError, nlError, syncError);

}
#ifdef LOOP

loopCount++;

if (totalErrors == 0)
{

printf ("Unit passed: Loop count = %d\n", loopCount);
}
else
{

printf ("Unit failed: Total errors = %d\n",totalErrors);
}

}
#endif /* LOOP */

return totalErrors;
}

The initial VARIable:VALue "ReportGenerate","c:\\VM5000HD\

\FullTest.rtf" statement saves the results from the measurements in

a file stored on the VM5000HD under the directory c:\VM5000HD\

and the file is named FullTest.rtf. The data from the file can be

imported into a spreadsheet application for further analysis. In a

manufacturing environment it maybe useful for the operator to input

the serial number of the device under test and this value could be

used for the name of the file. Then information from each device

could be correlated in a spreadsheet to determine various parame-

ters of the DUT and identify if any possible problems exist on the

production line.

The function generateReport is called within the above part of the

program. This part of the program performs the report command to

the VM5000HD and then queries the instrument until the report

is ready and passes the value back to the other part of the

program above.

/*
* Function: send the generateReport (which includes the report

path name)
* command to the VM5000HD and wait for it to complete.

* When complete the VM5000HD will return "OK" to the query.
*
* Input Parameters: full command for the VM5000HD including the

report path and type
*
* Return Value: none
*/

void generateReport (char * reportCommandWithPath)
{
int status;

// Send the report command to the VM5000HD and wait for it to complete
status = GpibWriteString (reportCommandWithPath, PRINTFLAG);
Sleep(COMMAND_TIME_DELAY);

// ReportGenerate command: Wait until ReportGenerate has finished
QueryUntilReady("ReportGenerate", QUERYOK,
REPORTGENERATE_TIMEOUT);

// Check for Errors and Warnings
ErrorOrWarningCheck("Error", "ReportGenerate");
ErrorOrWarningCheck("Warning", "ReportGenerate");
return;

}

The main body of the program is the following series of commands

/* starting point for the C code is main () */
void main (argc, argv)

int argc;
char *argv[];

{
int totalErrors = 0;

strcpy (openDevice, GPIB_ADDRESS);/* set the address of the VM5000HD
*/

GpibOpen (openDevice); /* open the VM5000HD */

#ifdef HOSTSTART
// start the VM5000HD application, but wait until it's started
GpibWriteString ("APPLICATION:ACTIVATE \"VM5000HD\"", PRINTFLAG);
Sleep (15000);

#endif /* HOSTSTART */

totalErrors = doMeasurements();
if (totalErrors == 0)
{

printf ("Unit passed, no errors\n");
}
else
{

printf ("Unit failed: Total errors = %d\n",totalErrors);
}

#ifdef HOSTSTART
strcpy(outString, "VARIable:VALue \"application\",\"exit\"\n");
sendCommandToVM5000HD (outString);

#endif /* HOSTSTART */

GpibClose ();
}

9www.tektronix.com/video

Using the VM5000HD and the GPIB Interface
Application Note

The program starts by setting the address of the VM5000HD. Then

the GPIB communication is opened between the program and the

VM5000HD. After communication is open the message APPLICA-

TION:ACTIVATE "VM5000HD" is sent to the platform to start the

VM5000HD measurement software. There is a 15 second sleep

allowing the application software to start.

// use this define, HOSTSTART, if you want the host controller to start
// the VM5000HD measurement software. Otherwise start it manually
// in the menu: File->RunApplication->VM5000HD
//#define HOSTSTART

The #define HOSTSTART allows your software program to start the

VM5000HD application as if the user had manually started the

application from the menu File->RunApplication –>VM5000HD.

Typically this function is commented out of the program and the

application must already be running on the VM5000HD.

It is useful to start the VM5000HD in a known state so that the

instrument is configured correctly before the measurements are

started. This is achieved by several functions, the first of these

DefaultSettings restore the instrument to its factory default settings.

/*
* Function: send the DefaultSettings command to the VM5000HD and

wait for it to
* complete. When complete the VM5000HD will return "OK"

to the query.
*
* Input Parameters: none
*
* Return Value: none
*/

void doDefaultSettings(void)
{
int status;

// Send the execute command to the VM5000HD and wait for it to
complete

strcpy(outString, "VARIable:VALue \"DefaultSettings\",\"1\"\n");
status = GpibWriteString (outString, PRINTFLAG);
Sleep(COMMAND_TIME_DELAY);

// DefaultSettings command: Wait until DefaultSettings has finished
QueryUntilReady("DefaultSettings", QUERYOK,

RECALL_SAVE_DEFAULT_TIMEOUT);

// Check for Errors and Warnings
ErrorOrWarningCheck("Error", "DefaultSettings");
ErrorOrWarningCheck("Warning", "DefaultSettings");
return;

}

This function issues the command "VARIable:VALue "Default

Settings","1" which restore the VM5000HD software to its default

settings and then waits for 50ms for the command to be passed

through to the VM5000HD application and then queries the instru-

ment using the QueryUntilReady function until the VM5000HD has

restore the default settings or until a timeout occurs.

You may wish to configure the VM5000HD using your own particular

settings rather than the factory defaults. This can be achieved by

RecallSettings function that takes the file name and the path of the

specific file you wish to recall and then queries the instrument using

the function QueryUntilReady until a value of "OK" is returned indi-

cation completion of the command, if not the function may timeout

or produce error warnings. This program uses the DefaultSettings

command and does not use RecallSettings, however the function is

within the main program for developers who wish to create their

own specific settings.

/*
* Function: send the recallSettings (which includes the settings file
*path name)command to the VM5000HD and wait for it to complete.
* When complete the VM5000HD will return "OK" to the query.
*
* Input Parameters: full command for the VM5000HD including the
* settings file path
* Return Value: none
*/

void recallSettings (char * recallCommandWithPath)
{
int status;

// Send the report command to the VM5000HD and wait for it to complete
status = GpibWriteString (recallCommandWithPath, PRINTFLAG);
Sleep(COMMAND_TIME_DELAY);

// RecallSettings command: Wait until RecallSettings has finished
QueryUntilReady("RecallSettings", QUERYOK,

RECALL_SAVE_DEFAULT_TIMEOUT);

// Check for Errors and Warnings
ErrorOrWarningCheck("Error", "RecallSettings");
ErrorOrWarningCheck("Warning", "RecallSettings");
return;

}

10 www.tektronix.com/video

Using the VM5000HD and the GPIB Interface
Application Note

You may wish in some configurations to actually save the settings of

the instrument within the programs. A function called SaveSettings

is available for this procedure. This function takes the file name and

the path of the specific file you wish to save and then queries the

instrument using the function QueryUntilReady until a value of "OK"

is returned indication completion of the command, if not the func-

tion may timeout or produce error warnings. Saved settings are

assigned the extension .vmset.

/*
* Function: send the saveSettings (which includes the settings file

path name)
* command to the VM5000HD and wait for it to complete.
* When complete the VM5000HD will return "OK" to the query.
*
* Input Parameters: full command for the VM5000HD including the

settings file path
*
* Return Value: none
*/

void saveSettings (char * saveCommandWithPath)
{
int status;

// Send the report command to the VM5000HD and wait for it to complete
status = GpibWriteString (saveCommandWithPath, PRINTFLAG);
Sleep(COMMAND_TIME_DELAY);

// SaveSettings command: Wait until SaveSettings has finished
QueryUntilReady("SaveSettings", QUERYOK,
RECALL_SAVE_DEFAULT_TIMEOUT);

// Check for Errors and Warnings
ErrorOrWarningCheck("Error", "SaveSettings");
ErrorOrWarningCheck("Warning", "SaveSettings");
return;

}

To prevent lockup each function has a condition for timeout of a

command. This time is set up by an initial set of values at the start

of the program. After the time interval specified the program will

have waited for sufficient time for the command to execute and

there has still been no response from the instrument, therefore the

command will timeout and prevent the program from locking up.

#define RESET_ERROR_OR_WARNING_DELAY 500 // This delay is
used when resetting Error or Warning

// These timeouts are "safety nets", so the code will not hang if there
is an unexpected problem
// They are passed into QueryUntilReady(), where the timeout check is
performed
// If the timeouts are exceeded, QueryUntilReady() will print an error
message
#define EXECUTE_TIMEOUT 150000
#define ERROR_AND_WARNING_TIMEOUT 5000
#define REPORTGENERATE_TIMEOUT 5000
#define RECALL_SAVE_DEFAULT_TIMEOUT 5000

11www.tektronix.com/video

Using the VM5000HD and the GPIB Interface
Application Note

/*
* Function: Query the VM5000HD for Errors or Warnings
* If a error/warning has been generated, it is cleared by
* writing the string "Off". This does not affect the error/warning
* on/off reporting control. That command is "ErrorReporting".
*
* Input Parameters:
* char *: the string "Error" or "Warning", which is to be checked
* char *: The current command that was sent to the VM5000HD
*
* Return Value: 0 for no error nor warning
*
* Note: the actual warning (the string returned) is left in

* queryResponse buffer so the calling program can analyze it if
* needed.
*/

int ErrorOrWarningCheck(const char *errorOrWarning, char
*currentCommand)
{
int resetErrorWarning = 0;
int returnVal;
char *pdest;

strcpy(errorWarningCheck, "VARIable:VALue? \"");
strcat(errorWarningCheck, errorOrWarning);
strcat(errorWarningCheck, "\"\n");

returnVal = getVM5000HDResponse(errorWarningCheck);

if (returnVal != QUERYZERO) {
/* If command sent was generated an Error or Warning then we

should wait a
* while to see if it changes to "0" before writing out the command

again.
*/

resetErrorWarning = TRUE;
pdest = strstr(currentCommand, errorOrWarning);
if(pdest != NULL) { // this is resetting Error or Warning to OFF

// Sleep, re-read it, if it's now 0, no need to reset it.
Sleep(RESET_ERROR_OR_WARNING_DELAY);
if (QUERYZERO == getVM5000HDResponse(errorWarningCheck)) {

resetErrorWarning = FALSE;
}

}
if (TRUE == resetErrorWarning) {

strcpy(errorWarningCheck, "VARIable:VALue \"");
strcat(errorWarningCheck, errorOrWarning);
strcat(errorWarningCheck, "\",\"off\"\n");
GpibWriteString (errorWarningCheck, PRINTFLAG);
// Wait until "Error/Warning off" has been cleared before doing

the next command
QueryUntilReady(errorOrWarning, QUERYZERO, ERROR_AND_

WARNING_TIMEOUT);
}

}
return returnVal;

}

In other cases the VM5000HD produces a variety of errors or

warning messages and the program can also report these conditions.

The function ErrorOrWarningCheck provides this facility. The inputs

to the function are the Error or Warning, which is to be checked and

the current command that the VM5000HD has performed. The query

is issued to check whether an error or warning is present. If an

error is present a sleep command is issued to wait and see if the

error or warning is cleared. If not then the error or warning is set to

“0” and a check is performed to see if it has cleared before executing

the next command.

There are several functions within the program which are provided

as a means to send command to the VM5000HD and to check

for errors and warnings from the instrument. The function

sendCommandToVM5000HD takes input as a char* string which

is the command and returns an integer value to indicate whether

there was an error or warning generated by the command. The

remote GPIB command is sent by the command GpibWriteString

(stringToVM5000HD, PRINTFLAG). To allow this command to

be passed to the VM5000HD application a sleep command of

50 millsecond is performed. Finally a check for errors or warnings

is done to ensure the command was received correctly and the

correct action was done by the VM5000HD. The value of errorStatus

and warningStatus are returned from the function.

/*
* Function: Send a string to the VM5000HD and
* sleep while the command propagates through the VM5000HD SW
*
* Input Parameters:
* string: a char * pointing to the string to write to the VM5000HD
*
* Return Value: integer returned from ErrorOrWarningCheck to indicate
* if there was an error or warning generated by this command
*/

int sendCommandToVM5000HD(char * stringToVM5000HD)
{
int status;
int errorStatus = 0;
int warningStatus = 0;

/* Send the Remote Command */
status = GpibWriteString (stringToVM5000HD, PRINTFLAG);
Sleep(COMMAND_TIME_DELAY);

// Check for Errors and Warnings
errorStatus = ErrorOrWarningCheck("Error", stringToVM5000HD);
warningStatus = ErrorOrWarningCheck("Warning", stringToVM5000HD);

return (errorStatus + warningStatus);
}

12 www.tektronix.com/video

Using the VM5000HD and the GPIB Interface
Application Note

The next function getVM5000HDResponse is used when specific

response is required back from the VM5000HD application and

this function checks for that response. The function takes the

char*stringToVM5000HD input pointing to the string written to the

VM5000HD and returns a value that corresponds to a specific query

classification. The GPIB command is sent to the VM5000HD applica-

tion GpibWriteString (stringToVM5000HD, PRINTFLAG) and then

waits for the response from the application. The GPIB command

GpibRead (queryResponse, MAX_BUF) reads the response back

from the VM5000HD and truncates the string to the major compo-

nent of the answer. This value is then checked and compared to the

query classification. The value of the query results is then returned

by the function.

/*
* Function: Some commands provide a specific response when they are
* done.
* This function checks for that response.
*
* Input Parameters:
* string: a char * pointing to the string to write to the VM5000HD
*
* Return Value: int indicating the value received from the VM5000HD
* Returns the classification of query, as specified by
* queryReturnType in lib.h
* QUERYERROR = error,
* QUERYZERO = "Header 0",
* QUERYONE = "Header 1",
* QUERYOK = "Header OK",
* QUERYOTHER = all others
*/

int getVM5000HDResponse(char *stringToVM5000HD)
{
char stringToAnalyze [MAX_BUF + 1];

// valued returned by the Gpib functions int status;

// The result of the query from the VM5000HD that is returned to the
caller.
int queryResult = QUERYERROR;

// This pointer will be set to point to the response past the header
char *strWithoutHeader;
unsigned int indexIntoString;

/* write the query to the VM5000HD
*/

status = GpibWriteString (stringToVM5000HD, PRINTFLAG);
if (status < 0)
{

printf("GPIB write error!!!!!\n");
GpibError ("Write Error:");
return queryResult;

}

/* read the response from the VM5000HD into queryResponse
*/

queryResponse[0] = '\0';
status = GpibRead (queryResponse, MAX_BUF);

if (status < 0)
{

printf("GPIB read error!!!!!\n");
GpibError ("Read Error:");
return queryResult;

}

// copy the string for analysis so the query response is still available
strcpy (stringToAnalyze,queryResponse);

// Remove the \n at the end of the response
while (stringToAnalyze[strlen(stringToAnalyze)-1] == '\n') {

stringToAnalyze[strlen(stringToAnalyze)-1] = '\0';
}
// remove the " mark
while (stringToAnalyze[strlen(stringToAnalyze)-1] == '\"') {

stringToAnalyze[strlen(stringToAnalyze)-1] = '\0';
}
while (stringToAnalyze[0] == '\"') {

for (indexIntoString = 0; indexIntoString <
strlen(stringToAnalyze); indexIntoString++)

stringToAnalyze[indexIntoString] =
stringToAnalyze[indexIntoString+1];

}
// remove the header from the response (all char up to the space)
strWithoutHeader = strchr(stringToAnalyze, ' ');
if (strWithoutHeader != 0) {

strWithoutHeader = strWithoutHeader+1; // skip space
}
if (strWithoutHeader == 0) {

queryResult = QUERYOTHER;
}
// see if the response is a zero (execute returns a 1 or 0)
else if (strcmp(strWithoutHeader, "0") == 0) {

queryResult = QUERYZERO;
} // see if the response is a one (execute returns a 1 or 0)
else if (strcmp(strWithoutHeader, "1") == 0) {

queryResult = QUERYONE;
}
// see if the response is a OK
// Save settings, Recall settings, Default settings
// and Generate Report all return "OK" when done.
else if (strcmp(strWithoutHeader, "OK") == 0) {

queryResult = QUERYOK;
}
else { // unknown string

queryResult = QUERYOTHER;
}
return queryResult;

}

13www.tektronix.com/video

Using the VM5000HD and the GPIB Interface
Application Note

The function doExecute provide a means to send execute commands

to the VM5000HD application and then waits until the instrument

has performed the operation using the QueryUntilReady function.

When the operation is complete a value of "0" will be returned by

the function. If the command is not executed correctly then the

command will timeout or the program will flag an error or warning.

/*
* Function: send the Execute command to the VM5000HD and wait for the
* execute to complete. When complete the VM5000HD will return "0" to
* the query.
* If the VM5000HD "RunMode" is set to "continuous", this will
* time out to avoid locking up if an error occurs.
*
* Input Parameters: none
*
* Return Value: none
*/
void doExecute(void)
{
int status;

// Send the execute command to the VM5000HD and wait for it to
complete

strcpy(outString, "VARIable:VALue \"Execute\",\"1\"\n");
status = GpibWriteString (outString, PRINTFLAG);

// Execute command: Wait until Execute has finished
QueryUntilReady("Execute", QUERYZERO, EXECUTE_TIMEOUT);

// Check for Errors and Warnings
ErrorOrWarningCheck("Error", "Execute");
ErrorOrWarningCheck("Warning", "Execute");
return;

}

These various functions are used within various parts of the program

and in some cases make calls to other function to check various

parameters. To show an example of the output from the program

an color bar measurement was made, with all other measurements

commented out and the PRINTFLAG was set "1" to show the execution

of commands (Note not all commands are show in the example

because these were repeated commands of queries to the instrument

which had not finished its instructions).

\GPIBExamples\Release>gpibexamples.exe
...writing id?
ID TEK/TDS5104,CF:91.1CT,FV:1.1.165+
...writing VARIable:VALue? "ID"

Query response to id? "ID Tek/VM5000HD FV:1.0"

...writing VARIable:VALue "DefaultSettings","1"

...writing VARIable:VALue? "DefaultSettings"

...writing VARIable:VALue? "Error"

...writing VARIable:VALue? "Warning"

...writing VARIable:VALue "RunMode","Once"

...writing VARIable:VALue? "Error"

...writing VARIable:VALue? "Warning"

...writing VARIable:VALue "Execute","1"

...writing VARIable:VALue? "Execute"

...writing VARIable:VALue? "Error"

...writing VARIable:VALue? "Warning"

...writing VARIable:VALue? "ColorBarsmVCh1"

"ColorBarsmVCh1 696.56 648.56 550.70 499.76 200.01 148.26
50.44 -0.53"
...writing VARIable:VALue? "ColorBarsmVCh2"

"ColorBarsmVCh2 -0.09 -349.82 78.66 -268.13 267.12 -78.78
346.11 0.45"
...writing VARIable:VALue? "ColorBarsmVCh3"

"ColorBarsmVCh3 0.24 31.93 -348.64 -316.45 313.13
345.99 -31.59 0.13"
...writing VARIable:VALue "ReportGenerate","c:\VM5000HD\FullTest.rtf"

...writing VARIable:VALue? "ReportGenerate"

...writing VARIable:VALue? "Error"

...writing VARIable:VALue? "Warning"

...writing VARIable:VALue "Warning","off"

...writing VARIable:VALue? "Warning"

Unit passed, no errors

14 www.tektronix.com/video

Using the VM5000HD and the GPIB Interface
Application Note

The time it takes to perform each of these measurements can be a

critical factor in a manufacturing environment. The ability to shave

seconds off the manufacturing time can have drastic performance

improvements for the production line. The following table shows the

time it takes to perform each measurement individually and the time

it takes to completely perform all measurements once. These values

are typical results and could depend on the speed of the computer

used to run this test program.

Conclusion

The purpose of this program is to provide an outline of how to con-

trol the VM5000HD application and how to issue commands and

queries to the instrument. This will allow the VM5000HD analog HD

component measurements to be incorporated into automation rou-

tine and allow simple pass/fail indication of the device under test.

This program can be adapted for your own specific application and

provides a starting point from which to develop your own manufac-

turing routine. Parts or this entire program can be cut and pasted

into your own routines and developed for your own application.

However Tektronix is not responsible for support of this program and

its derivatives.

15www.tektronix.com/video

Channel Color Multi- Non- Total
Delay Bars burst Linearity Noise Sync Measurement
(Sec) (Sec) (Sec) (Sec) (Sec) (Sec) Time

AutoScale ON 2.11 1.92 1.84 12.06 1.84 1.75 28.59

AutoScale OFF 4.03 1.94 2.06 14.98 6.39 1.94 35.59

Contact Tektronix:

ASEAN / Australasia / Pakistan (65) 6356 3900

Austria +43 2236 8092 262

Belgium +32 (2) 715 89 70

Brazil & South America 55 (11) 3741-8360

Canada 1 (800) 661-5625

Central Europe & Greece +43 2236 8092 301

Denmark +45 44 850 700

Finland +358 (9) 4783 400

France & North Africa +33 (0) 1 69 86 80 34

Germany +49 (221) 94 77 400

Hong Kong (852) 2585-6688

India (91) 80-2275577

Italy +39 (02) 25086 1

Japan 81 (3) 3448-3010

Mexico, Central America & Caribbean 52 (55) 56666-333

The Netherlands +31 (0) 23 569 5555

Norway +47 22 07 07 00

People’s Republic of China 86 (10) 6235 1230

Poland +48 (0) 22 521 53 40

Republic of Korea 82 (2) 528-5299

Russia, CIS & The Baltics +358 (9) 4783 400

South Africa +27 11 254 8360

Spain +34 (91) 372 6055

Sweden +46 8 477 6503/4

Taiwan 886 (2) 2722-9622

United Kingdom & Eire +44 (0) 1344 392400

USA 1 (800) 426-2200

USA (Export Sales) 1 (503) 627-1916

For other areas contact Tektronix, Inc. at: 1 (503) 627-7111

Updated 20 September 2002

For Further Information
Tektronix maintains a comprehensive, constantly expanding collec-
tion of application notes, technical briefs and other resources to help
engineers working on the cutting edge of technology. Please visit
www.tektronix.com

Copyright © 2003, Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and
foreign patents, issued and pending. Information in this publication supersedes that in all previously
published material. Specification and price change privileges reserved. TEKTRONIX and TEK
are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks,
trademarks or registered trademarks of their respective companies.
09/03 FL5639/WWW 25W-16961-0

16 www.tektronix.com/video

VM5000HD Automated
Video Measurement Set

The VM5000HD automates a variety of component

analog video measurements utilized to verify the

integrity and quality of HDTV video signals. It

automatically assesses conformance of selected

video signal parameters to applicable EIA-770-3,

SMPTE-274M and 296M standards. It also

automates measurement of other industry-

standard video parameters used to quantify the

performance of digital set-top boxes or other

consumer video reception and play-out devices

with component analog interfaces.

Overview of VM5000HD Features:

- Fast, accurate and repeatable video measurements

- Fully automated, comprehensive component

analog video measurements

- Supports HDTV, progressive scan and PC format

signals (Y'P'bP'r and RGB)

- Acquisition bandwidth and high sample rates

for HDTV signals

- Extensive documentation capabilities

- Standard GPIB and LAN remote control capability

